Edge-Triggered Flip-Flop

Prof. James L. Frankel Harvard University

Version of 11:05 PM 1-Dec-2021 Copyright © 2021 James L. Frankel. All rights reserved.

Edge-Triggered Flip-Flop

- An edge-triggered flip-flop is a memory component that stores a single bit value
 - Similar to a flip-flop, but the input is committed to be stored on the transition of a clock signal
 - The operative edge of the clock can be either a rising edge or a falling edge
 - There are still required set-up and hold timing constraints
 - That is, the input data must be stable for some period of time before and after the clock edge

Encapsulation of Rising Edge-Triggered Flip-Flop

Encapsulation of Falling Edge-Triggered Flip-Flop

D	Clk	R	S
Х	0	$\sim S_0 = R_0$	$\sim R_0 = S_0$
D	1	D	~D

Encapsulation of D Latch

Derivation of an Edge-Triggered Flip-Flop from a D Latch

- Use two D latches
 - The two D latches are in opposite states (*i.e.*, when one is passing-through, the other is storing and vice versa)
 - Connect the output of the first latch (the *input stage* latch) to the input of the second latch (the *output stage* latch)
 - We refer to this as a *Master-Slave* configuration
- We need to understand what happens when the clock is stable and also on the clock transitions

Master-Slave Falling-Edge D Flip-Flop

Master-Slave Falling-Edge D Flip-Flop

D	Clk	Q
Х	0	Q _o
х	\uparrow	Q ₀
х	1	Q ₀
D	\checkmark	D

Master-Slave Rising-Edge D Flip-Flop

D	Clk	Q
Х	0	Q _o
D	\uparrow	D
х	1	Q ₀
Х	\checkmark	Q ₀